Section 1.1: Points and Vectors in \mathbb{R}^n

• A **point** in \mathbb{R}^n is an ordered sequence of real numbers, denoted

$$(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n.$$

• A vector in \mathbb{R}^n is an ordered sequence of real numbers, denoted

 $\langle x_1, x_2, \ldots, x_n \rangle \in \mathbb{R}^n.$

- Generally, a point signifies a location, while a vector signifies direction and magnitude.
- However, this distinction will be blurred somewhat, since we will use the "position vector of a point" to represent the point itself. The position vector of the point

$$(x_1, x_2, \ldots, x_n)$$

is

 $\langle x_1, x_2, \ldots, x_n \rangle.$

Section 1.2: Vector Operations

• To add two vectors in \mathbb{R}^n , we add coordinates:

$$\langle x_1, x_2, \ldots, x_n \rangle + \langle y_1, y_2, \ldots, y_n \rangle = \langle x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n \rangle.$$

To multiply a vector by a scalar α, we multiply each coordinate by α:

$$\alpha \cdot \langle x_1, x_2, \ldots, x_n \rangle = \langle \alpha x_1, \alpha x_2, \ldots, \alpha x_n \rangle.$$

• Except in special cases (namely, the cross product in \mathbb{R}^3), there is no natural notion of "vector multiplication."

• Theorem 1.8:

For all x, y ∈ ℝⁿ, x + y = y + x.
For all x, y, z ∈ ℝⁿ, (x + y) + z = x + (y + z).
For all x ∈ ℝⁿ, x + 0 = 0 + x = x.
For all x ∈ ℝⁿ, x + (-x) = (-x) + x = 0.
For all x ∈ ℝⁿ and all α, β ∈ ℝ, α(βx) = (αβ)x.
For all x ∈ ℝⁿ and all α, β ∈ ℝ, (α + β)x = αx + βx.
For all x, y ∈ ℝⁿ and all α ∈ ℝ, α(x + y) = αx + αy.
For all x ∈ ℝⁿ, 1x = x.
For all x ∈ ℝⁿ, 0x = 0.

Length of a Vector

• Given a vector $\vec{\mathbf{x}} = \langle x_1, \dots, x_n \rangle$ in \mathbb{R}^n , the magnitude or length of $\vec{\mathbf{x}}$ is defined as

$$\|\vec{\mathbf{x}}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

• The distance between points A and B is $\left\| \overrightarrow{AB} \right\|$.

- Theorem 1.10:
 - **1** For all $\vec{\mathbf{x}} \in \mathbb{R}^n$, $\|\vec{\mathbf{x}}\| \ge 0$.
 - **2** For all $\vec{\mathbf{x}} \in \mathbb{R}^n$, $\|\vec{\mathbf{x}}\| = 0$ if and only if $\vec{\mathbf{x}} = \vec{0}$.
 - **3** For all $\vec{\mathbf{x}} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, $\|\alpha \vec{\mathbf{x}}\| = |\alpha| \|\vec{\mathbf{x}}\|$.

Unit Vectors

- A vector whose length is 1 is called a unit vector.
- A nonzero vector $\vec{\mathbf{x}} \in \mathbb{R}^n$ can be scaled to a unit vector $\vec{\mathbf{u}}$ in the same direction as $\vec{\mathbf{x}}$ using the formula

$$\vec{\mathbf{u}} = \frac{1}{\|\vec{\mathbf{x}}\|}\vec{\mathbf{x}}.$$